Problem Statement
Multi-modal Automatic Image Annotation
Training with Pointwise Automatic Annotations
Multi-sensor Localization
Conclusion
Problem Statement
Multi-modal Automatic Image Annotation
Training with Pointwise Automatic Annotations
Multi-sensor Localization
Conclusion
Method | Precision (%) | Recall (%) | MAE-x (px) |
---|---|---|---|
M | 84.6 | 35.9 | 3.91 |
X. Zhu et al., “Cylindrical and asymmetrical 3d convolution networks for lidar segmentation”. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021.
Method | Precision (%) | Recall (%) | MAE-x (px) |
---|---|---|---|
L | 62.6 | 22.7 | 2.63 |
J. Wang et al., “Deep High-Resolution Representation Learning for Visual Recognition,” In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3349-3364, 1 Oct. 2021.
J. Wang et al., “Deep High-Resolution Representation Learning for Visual Recognition,” In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3349-3364, 1 Oct. 2021.
Method | Precision (%) | Recall (%) | MAE-x (px) |
---|---|---|---|
S | 40.2 | 80.7 | 1.00 |
Method | Precision (%) | Recall (%) |
---|---|---|
M | L | 64.7 | 46.2 |
M | S | 39.0 | 88.1 |
M | S | L | 37.7 | 88.7 |
M & L | 95.7 | 18.8 |
M & S | 92.5 | 36.6 |
M & S & L | 99.0 | 17.8 |
Problem Statement
Multi-modal Automatic Image Annotation
Training with Pointwise Automatic Annotations
Multi-sensor Localization
Conclusion
Box | 50x50 | 100x100 | 150x150 | 200x200 | 250x250 | 300x300 | 350x350 | 400x400 |
---|---|---|---|---|---|---|---|---|
AP % | 21.2 | 39.2 | 42.5 | 43.2 | 38.9 | 38.3 | 38.4 | 41.3 |
MAE-x (px) | 4.01 | 5.84 | 8.90 | 10.84 | 11.76 | 14.97 | 18.2 | 24.30 |
Problem Statement
Multi-modal Automatic Image Annotation
Training with Pointwise Automatic Annotations
Multi-sensor Localization
Conclusion
Model | M95 | MS95 | M90 | MS90 |
---|---|---|---|---|
Precision (%) | 95 | 95 | 90 | 90 |
Recall (%) | 4.3 | 30.4 | 33.3 | 38.5 |
Problem Statement
Multi-modal Automatic Image Annotation
Training with Pointwise Automatic Annotations
Multi-sensor Localization
Conclusion
Vehicle state: \(\boldsymbol{x}_{k} = \left[x_{B,k}, y_{B,k}, \theta_{B,k}, v_{k}, \dot{\theta}_{k} \right]^{\top}\) + Constant velocity evolution model
GNSS observations
\[\begin{align} \boldsymbol{z}^{\text{G}}_k = \begin{bmatrix} x_{B,k} \\ y_{B,k} \\ \theta_{B,k} \end{bmatrix} + \begin{bmatrix} \cos\theta_{B,k} & -\sin\theta_{B,k} & 0 \\ \sin\theta_{B,k} & \cos\theta_{B,k} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} t_x\\ t_y \\ 1 \end{bmatrix} + \boldsymbol{\beta}^\text{G}_k \end{align}\]
\[\begin{equation} \left\{\begin{aligned} \boldsymbol{z}^{\text{W}_{rl}}_k &= \frac{2\pi}{\rho_{rl}}\left(v_k - \frac{\ell_r}{2}\dot{\theta}_k \right) + \boldsymbol{\beta}^{\text{W}_{rl}}_k\\ \boldsymbol{z}^{\text{W}_{rr}}_k &= \frac{2\pi}{\rho_{rr}}\left(v_k + \frac{\ell_r}{2}\dot{\theta}_k \right) + \boldsymbol{\beta}^{\text{W}_{rr}}_k \\ \boldsymbol{z}^{\text{W}_{fl}}_k &= \frac{2\pi}{\rho_{fl}} \sqrt{\ell_{rf}^2\dot{\theta}_k^2 + \left(v_k - \frac{\ell_f}{2} \dot{\theta}_k\right)^2} + \boldsymbol{\beta}^{\text{W}_{fl}}_k \\ \boldsymbol{z}^{\text{W}_{fr}}_k &= \frac{2\pi}{\rho_{fr}} \sqrt{\ell_{rf}^2\dot{\theta}_k^2 + \left(v_k + \frac{\ell_f}{2} \dot{\theta}_k\right)^2} + \boldsymbol{\beta}^{\text{W}_{fr}}_k \end{aligned}\right. \end{equation}\]
\[\begin{align} {}^{\text{C}} \boldsymbol{Y}^{\alpha}_k = \left\{\left. {}^{\text{C}}\boldsymbol{y}^{\alpha}_{k,i}=\alpha_{k,i}\in\left[-\pi;\pi\right)\right| i=1,\ldots \right\} \end{align}\] \[\begin{align} \alpha_{k,i} = atan\left(\frac{u_{k,i} - c_x}{f_x}\right) \end{align}\]
\[\begin{align} {}^{\text{C}} \boldsymbol{\mathcal{M}}^{\alpha}_k=\left\{\left.{}^{\text{C}}\boldsymbol{m}^{\alpha}_{k,j}=\alpha_{k,j}\in\left[-\pi;\pi\right)\right|j=1,\ldots \right\} \end{align}\]
\[\begin{align} \mathcal{D}^\text{C}_{k,i,j} = \left( {}^{\text{C}} \boldsymbol{y}^{\alpha}_{k,i} - {}^{\text{C}}\boldsymbol{m}^{\alpha}_{k,j}\right)^2 \end{align}\]
\[\begin{equation} {}^{\text{C}} \boldsymbol{y}^{\alpha}_{k,i} = {}^{\text{C}}\boldsymbol{m}^{\alpha}_{k,j} + \boldsymbol{\beta}^\alpha_{k,i} \end{equation}\]
Covariance | |
---|---|
Evolution model | \(\left[10^{-2}, 10^{-2}, 10^{-2}, 10^2, 10^{-1}\right] \cdot \mathbb{I}_{5}\) |
Wheel speeds | \(0.273^{2} \cdot \mathbb{I}_{4}\) |
Yaw rate | \(10^{-12}\) |
Bearings | \(4 \cdot 10^{-4}\) |
Points \[ X = \begin{pmatrix} x_0 & x_1 & \dots & x_N \\ y_0 & y_1 & \dots & y_N \end{pmatrix} \]
Mean
\[ \bar{X} = \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} \]
\[ Cov = \frac{ \left(X - \bar{X}\right) \cdot \left( X - \bar{X} \right)^T }{ N - 1 } \]
\[ Cov = Q \cdot \Gamma \cdot Q^{-1} \]
\[ Q = \begin{pmatrix} \color{red}{v_1^x} & \color{green}{v_2^x} \\ \color{red}{v_1^y} & \color{green}{v_2^y} \end{pmatrix} \]
\[ \Gamma = \begin{pmatrix} \color{red}{\sigma_1^2} & 0 \\ 0 & \color{green}{\sigma_2^2} \end{pmatrix} \]
Geometric properties:
\[\begin{align} {}^{\text{L}}\boldsymbol{Y}^{\text{L}}_k = \left\{ \left. {}^{\text{L}}\boldsymbol{y}^{\text{L}}_{k,i} = \left({}^{\text{L}}x^{\text{L}}_{k,i},{}^{\text{L}}y^{\text{L}}_{k,i}\right) \right| i=1,\ldots \right\}, \end{align}\]
\[\begin{align} {}^{\text{O}}\boldsymbol{Y}^{\text{L}}_k = \left\{ \left. {}^{\text{O}}\boldsymbol{y}^{\text{L}}_{k,i} = \left({}^{\text{O}}x^{\text{L}}_{k,i},{}^{\text{O}}y^{\text{L}}_{k,i}\right) \right| i=1,\ldots \right\}, \end{align}\]
\[\begin{equation} \mathcal{D}^{\text{mah}}_{m,y}= \sqrt{(m -y)^\top R^{-1} (m-y)^\top} \end{equation}\]
\[\begin{equation} {}^{\text{L}}\boldsymbol{y}^{\text{L}}_{k,i} = {}^{\text{L}}\boldsymbol{m}_{k,j} + \boldsymbol{\beta}^L_{k,i} \end{equation}\]